Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein

Author:

Frenkel Alona,Zecharia Eli,Gómez-Pérez Daniel,Sendersky Eleonora,Yegorov Yevgeni,Jacobs Avi,Benichou Jennifer,Stierhof York-Dieter,Parnasa Rami,Golden Susan S,Kemen Eric,Schwarz Rakefet

Abstract

AbstractCyanobacterial biofilms are ubiquitous and play important roles in diverse environments, yet, understanding of the processes underlying development of these aggregates is just emerging. Here we report cell specialization in formation of Synechococcus elongatus PCC 7942 biofilms - a hitherto unknown characteristic of cyanobacterial multicellularity. We show that only a quarter of the cell population expresses at high levels the four-gene ebfG-operon that is required for biofilm formation. Almost all cells, however, are assembled in the biofilm. Detailed characterization of EbfG4 encoded by this operon revealed cell-surface localization as well as its presence in the biofilm matrix. Moreover, EbfG1-3 were shown to form amyloid structures such as fibrils and are thus likely to contribute to the matrix structure. These data suggest a beneficial ‘division of labour’ during biofilm formation where only some of the cells allocate resources to produce matrix proteins – ‘public goods’ that support robust biofilm development by the majority of the cells. Additionally, previous studies revealed the operation of a self-suppression mechanism that depends on an extracellular inhibitor, which supresses transcription of the ebfG-operon. Here we revealed inhibitor activity at an early growth stage and its gradual accumulation along the exponential growth phase in correlation with cell density. Data, however, do not support a threshold-like phenomenon known for quorum-sensing in heterotrophs. Together, data presented here demonstrate cell specialization and imply density-dependent regulation thereby providing novel insights into cyanobacterial communal behaviour.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3