Mini-batching ecological data to improve ecosystem models with machine learning

Author:

Boussange VictorORCID,Aceituno Pau VilimelisORCID,Pellissier LoïcORCID

Abstract

AbstractEcosystems are involved in global biogeochemical cycles that regulate climate and provide essential services to human societies. Mechanistic models are required to describe ecosystem dynamics and anticipate their response to anthropogenic pressure, but their adoption has been limited in practice because of issues with parameter identification and because of model inaccuracies. While observations could be used to directly estimate parameters and improve models, model nonlinearities as well as shallow, incomplete and noisy datasets complicate this process. Here, we propose a machine learning (ML) framework relying on a mini-batch method combined with automatic differentiation and state-of-the-art optimizers. By splitting the data into mini-batches with a short time horizon, we show both analytically and numerically that the mini-batch method regularizes the learning problem. When combined with the proposed numerical implementation, the resulting ML framework can efficiently learn the parameter of complex dynamical models and is a workhorse for model selection. We evaluate the performance of the ML framework in recovering the dynamics of a simulated food-web. We show that it can efficiently learn from noisy, incomplete and independent time series, accurately estimating the model parameters and providing reliable short-term forecasts. We further show that the ML framework can provide statistical support for the true generating model among several candidates. In summary, the proposed ML framework can efficiently learn from data and elucidate mechanistic pathways to improve our understanding and predictions of ecosystem dynamics.Author summaryEcosystem models which explicitly represent ecological mechanisms are required to forecast ecosystem responses to global changes, but large mismatches with observations limit their predictive ability. To help address this major problem, we propose a novel machine learning (ML) method aiming at improving ecosystem models with data. The ML method is based on a learning strategy where the model is matched against small chunks of data, called mini-batches, and it involves numerical techniques commonly used in the training of neural networks. By benchmarking the performance of the ML method with a challenging food-web model, we show that our approach is robust against noise and partial observations, can process and combine the information contained in independent datasets, and can provide statistical support for the most adequate model among several candidates. Our proposed method therefore accommodates the reality of ecological datasets and our partial knowledge of ecosystem processes. By efficiently blending data and ecological theory with state-of-the-art ML techniques, our work offers novel tools to improve our understanding and predictions of ecosystem dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3