Abstract
AbstractHuman-aided translocation of individuals within the species’ range, assisted gene flow (AGF), has been suggested as a climate change mitigation strategy, especially for foundational species, such as forest trees. The benefits and risks of AGF largely depend on the genetic divergence between host and donor populations, their rate and direction of hybridization, and the climate distance that the transfer involves. In this study, we explored the use of Oriental beech (Fagus sylvatica subsp. orientalis), growing from Iran to the Balkans, for AGF in populations of European beech (F. sylvatica subsp. sylvatica), which grow throughout Europe and are increasingly affected by climate warming. Using 16 microsatellite loci and samples from 13 and 6 natural populations of Oriental and European beech, respectively, we identified 5 distinct genetic clusters in Oriental beech with a divergence (FST) of 0.15 to 0.25 from European beech. Using this knowledge, we tracked the origin of 11 Oriental beech stands in Western Europe, some established in the early 1900s. In two stands of Greater Caucasus origin, we additionally genotyped offspring and found evidence for extensive hybridization, with 41.3% and 17.8% of the offspring having a hybrid status. Further, climate data revealed a higher degree of seasonality across the Oriental beech growing sites than across the planting sites in Western Europe, with some sites additionally having a warmer and drier climate. Accordingly, in one of these stands, we found evidence that bud burst of Oriental beech occurs four days earlier than in European beech. These results suggest that AGF of Oriental beech could increase the genetic diversity of European beech stands and may even help the introgression of variants that are more adapted to future climatic conditions. Our study showcases an evaluation of the benefits and risks of AGF and calls for similar studies on other native tree species.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献