The contrasted impacts of grasshoppers on soil microbial activities in function of primary production and herbivore diet

Author:

Ibanez Sébastien,Foulquier Arnaud,Brun Charles,Colace Marie-Pascale,Piton Gabin,Bernard Lionel,Gallet Christiane,Clément Jean-Christophe

Abstract

AbstractHerbivory can have contrasted impacts on soil microbes and nutrient cycling, which has stimulated the development of conceptual frameworks exploring the links between below- and aboveground processes. The “productivity model” predicts that herbivores stimulate microbial activities and accelerate nutrient mineralization in productive ecosystems, while they have an opposite effect in less productive ecosystems. In parallel, the “diet model” predicts that herbivores feeding on conservative plants accelerate nutrient cycling while those feeding on exploitative plants decelerate nutrient cycling, due to changes in litter inputs. Since these two frameworks can lead to conflicting predictions in some cases, experimental evidence combining herbivore diet and plant productivity is required.During two consecutive years, we conducted an experiment controlling the presence of three grasshopper species consuming either grasses, forbs or both in twelve natural and managed alpine grasslands with contrasted productivities. In order to assess the effects of herbivory on soil microbes, we measured their extracellular enzymatic activities, biomass and potential nitrogen mineralization (PNM). Soil and vegetation were also characterized to test how much they modulated the effects of herbivory on microbes.Contrary to the predictions of the diet model, the effects of herbivory on microbial characteristics did not depend on the herbivores diet, but were influenced by primary production, though in a way that differed from the productivity model. The most productive sites were constituted by exploitative plant species which depleted N resources in the soil, and by microbes producing relatively few extracellular enzymes, leading to a lower PNM. Herbivory increased microbial biomass and decreased the production of extracellular enzymes in those sites, possibly through the stimulation of root exudates produced by exploitative species. The least productive sites were characterized by conservative plants, high soil C content, and by microbes having a resource acquisition strategy (more extracellular enzymes, higher PNM). Herbivory decreased microbial biomass and increased the production of extracellular enzymes in those sites. This pattern can be explained by the loss of carbon associated with insect respiration, which increases the resource requirements of microbes and by a lower production of root exudates by conservative species. Therefore, the effects of two years of herbivory on soil microbes were at odds with the productivity model, which focuses instead on longer term effects corresponding to herbivory-induced changes in plant species composition. This highlights the multidimensional feature of the impacts of herbivory on ecosystem functioning, both in space and time.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Impact of herbivores on nitrogen cycling: contrasting effects of small and large species;Oecologia,2004

2. Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford university press

3. Bardgett RD , Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press Oxford

4. HERBIVORE-MEDIATED LINKAGES BETWEEN ABOVEGROUND AND BELOWGROUND COMMUNITIES

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3