Abstract
ABSTRACTChitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet. To investigate these issues, we use Drosophila as a model. We previously showed that chitin deposition in ectodermal tissues requires the concomitant activities of the chitin synthase enzyme Kkv and the functionally interchangeable proteins Exp and Reb. Here we carry out a cellular and molecular analysis of chitin deposition and we show that chitin polymerisation and chitin translocation to the extracellular space are uncoupled. We find that Kkv activity in chitin translocation, but not in polymerisation, requires the activity of Exp/Reb, and in particular of its conserved Nα-MH2 domain. The activity of Kkv in chitin polymerisation and translocation correlate with Kkv subcellular localisation, and in absence of Kkv-mediated extracellular chitin deposition, chitin accumulates intracellularly as membrane-less punctae. Furthermore, we find that Kkv and Exp/Reb display a largely complementary pattern at the apical domain, and that Exp/Reb activity regulates the topological distribution of Kkv at the apical membrane. We propose a model in which Exp/Reb regulates the organisation of Kkv complexes at the apical membrane which, in turn, regulates the function of Kkv in extracellular chitin translocation.
Publisher
Cold Spring Harbor Laboratory