Large-scale capture of hidden fluorescent labels for training generalizable markerless motion capture models

Author:

Butler Daniel J.ORCID,Keim Alexander P.ORCID,Ray ShantanuORCID,Azim EimanORCID

Abstract

AbstractRecent advances in deep learning-based markerless pose estimation have dramatically improved the scale and ease with which body landmarks can be tracked in studies of animal behavior. However, pose estimation for animals in a laboratory setting still faces some specific challenges. Researchers typically need to manually generate new training data for each experimental setup and visual environment, limiting the generalizability of this approach. With each network being trained from scratch, different investigators track distinct anatomical landmarks and analyze the resulting kinematic data in idiosyncratic ways. Moreover, much of the movement data is discarded: only a few sparse landmarks are typically labeled, due to the inherent scale and accuracy limits of manual annotation. To address these issues, we developed an approach, which we term GlowTrack, for generating large training datasets that overcome the relatively modest limits of manual labeling, enabling deep learning models that generalize across experimental contexts. The key innovations are: a) an automated, high-throughput approach for generating hidden labels free of human error using fluorescent markers; b) a multi-camera, multi-light setup for generating large amounts of training data under diverse visual conditions; and c) a technique for massively parallel tracking of hundreds of landmarks simultaneously using computer vision feature matching algorithms, providing dense coverage for kinematic analysis at a resolution not currently available. These advances yield versatile deep learning models that are trained at scale, laying the foundation for standardized behavioral pipelines and more complete scrutiny of animal movements.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. On aims and methods of Ethology;Zeitschrift für Tierpsychologie,1963

2. The structure of skilled forelimb reaching in the rat: A proximally driven movement with a single distal rotatory component

3. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces;Journal of neural engineering,2006

4. Three-dimensional, automated, real-time video system for tracking limb motion in brain–machine interface studies

5. HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human†Motion;International Journal of Computer Vision,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3