Cohort-mean measured macromolecules lead to more robust linear-combination modeling than parameterized and subject-specific ones

Author:

Zöllner Helge J.ORCID,Davies-Jenkins Christopher W.ORCID,Murali-Manohar SaipavitraORCID,Gong TaoORCID,Hui Steve C. N.ORCID,Song YuluORCID,Chen Weibo,Wang GuangbinORCID,Edden Richard A. E.ORCID,Oeltzschner GeorgORCID

Abstract

AbstractExpert consensus recommends linear-combination modeling (LCM) of 1H MR spectra with sequence-specific simulated metabolite basis function and experimentally derived macromolecular (MM) basis functions. Measured MM basis functions have been derived from metabolite-nulled spectra averaged across a small cohort. The use of subject-specific instead of cohort-averaged measured MM basis functions has not been studied. Furthermore, measured MM basis functions are not widely available to non-expert users, who commonly rely on parameterized MM signals internally simulated by LCM software. To investigate the impact of the choice of MM modeling, this study, therefore, compares metabolite level estimates between different MM modeling strategies (cohort-mean measured; subject-specific measured; parameterized) in a lifespan cohort and characterizes its impact on metabolite-age associations.100 conventional (TE = 30 ms) and metabolite-nulled (TI = 650 ms) PRESS datasets, acquired from the medial parietal lobe in a lifespan cohort (20-70 years of age), were analyzed in Osprey. Short-TE spectra were modeled in Osprey using six different strategies to consider the macromolecular baseline. Fully tissue- and relaxation-corrected metabolite levels were compared between MM strategies. Model performance was evaluated by model residuals, the Akaike information criterion (AIC), and the impact on metabolite-age associations.The choice of MM strategy had a significant impact on the mean metabolite level estimates and no major impact on variance. Correlation analysis revealed moderate-to-strong agreement between different MM strategies (r > 0.6). The lowest relative model residuals and AIC values were found for the cohort-mean measured MM. Metabolite-age associations were consistently found for two major singlet signals (tCr, tCho) for all MM strategies, however, findings for highly J-coupled metabolites it was depended on the MM strategy. A variance partition analysis indicated that up to 44% of the total variance was related to the choice of MM strategy. Additionally, the variance partition analysis reproduced the metabolite-age association for tCr and tCho found in the simpler correlation analysis.In summary, the inclusion of a single high-SNR MM basis function (cohort-mean) leads to more robust metabolite estimation (lower model residuals and AIC values) compared to MM strategies with more degrees of freedom (Gaussian parametrization) or subject-specific MM information. Integration of multiple LCM analyses into a single statistical model potentially improves the robustness in the detection of underlying effects (e.g. metabolite vs age), reduces algorithm-based bias, and estimates algorithm-related variance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3