Co-opted Genes of Algal Origin Protect C. elegans against Cyanogenic Toxins

Author:

Wang Bingying,Pandey Taruna,Long Yong,Delgado-Rodriguez Sofia E.,Daugherty Matthew D.ORCID,Ma Dengke K.ORCID

Abstract

SUMMARYAmygdalin is a cyanogenic glycoside widely used by many plants in herbivore defense. Poisonous to most animals, amygdalin-derived cyanide is detoxified by potent enzymes commonly found in bacteria and plants but not most animals. Here we show that the nematode C. elegans can detoxify amygdalin by a genetic pathway comprising cysl-1, egl-9, hif-1 and cysl-2. Essential for amygdalin resistance, cysl-1 encodes a protein similar to cysteine synthetic enzymes in bacteria and plants, but functionally co-opted in C. elegans. We identify exclusively HIF-activating egl-9 mutations in a cysl-1 suppressor screen and show that cysl-1 confers amygdalin resistance by regulating HIF-1-dependent cysl-2 transcription to protect against amygdalin toxicity. Phylogenetic analysis suggests cysl-1 and cysl-2 were likely acquired from green algae through horizontal gene transfer (HGT) and functionally co-opted in protection against amygdalin. Our studies reveal that HGT-mediated evolutionary changes can facilitate host survival and adaptation to adverse environment stresses and biogenic toxins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3