Differential ability of three bee species to move genes via pollen

Author:

Fragoso Fabiana P.,Brunet JohanneORCID

Abstract

AbstractSince the release of genetically engineered (GE) crops, there has been increased concern about the introduction of GE genes into non-GE fields of a crop and their spread to feral or wild cross-compatible relatives. More recently, attention has been given to the differential impact of distinct pollinators on gene flow, with the goal of developing isolation distances associated with specific managed pollinators. To examine the differential impact of bee species on gene movement, we quantified the relationship between the probability of getting a GE seed in a pod, and the order in which a flower was visited, or the cumulative distance travelled by a bee in a foraging bout. We refer to these relationships as ‘seed curves’ and compare these seeds curves among three bee species. The experiments used Medicago sativa L. plants carrying three copies of the glyphosate resistance (GR) allele as pollen donors, such that each pollen grain carried the GR allele, and conventional plants as pollen recipients. Different foraging metrics, including the number of GR seeds produced over a foraging bout, were also quantified and contrasted among bee species. Leafcutting bees produced the lowest number of GR genes in a foraging bout, and moved them the shortest distances, bumble bees the longest. Values for honey bees were intermediate. Seed curves correlated with field-based gene flow estimates. Thus, differential seed curves of bee species, reflecting within foraging bout patterns, translated into distinct abilities of bee species to move genes at a landscape level. Differences in seed curves reflected differences in foraging behavior among bee species, and helped explain their differential impact on gene flow and the spread of GE genes in insect-pollinated crops.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3