Transcriptome responses of the aphid vectorMyzus persicaeare shaped by identities of the host plant and the virus

Author:

Chesnais QuentinORCID,Golyaev Victor,Velt Amandine,Rustenholz Camille,Verdier Maxime,Brault Véronique,Pooggin Mikhail M.,Drucker MartinORCID

Abstract

AbstractBackgroundNumerous studies have documented modifications in vector orientation behavior, settling and feeding behavior, and/or fecundity and survival due to virus infection in host plants. These alterations are often expected to enhance virus transmission, which has led to the hypothesis that such effects are vector manipulations by the virus. However, until now, the gene expression changes correlating with these effects and indicative of modified vector pathways and mechanisms are mostly unknown.ResultsTranscriptome profiling ofMyzus persicaeaphids feeding on turnip yellows virus (TuYV) and cauliflower mosaic virus (CaMV) infectedArabidopsis thalianaandCamelina sativarevealed a substantial proportion of commonly deregulated genes, amongst them many with general functions in plant-virus-aphid interactions. We identified also aphid genes specifically deregulated by CaMV or TuYV infection, which might be related to the viral transmission mode. Furthermore, we observed strong host-specific differences in the gene expression patterns with plant virus infection causing more deregulations of aphid genes onA. thalianathan onC. sativa, likely related to the differences in susceptibility of the plant hosts to these viruses. Finally, stress-related aphid genes were downregulated inM. persicaeon both infected plants, regardless of the virus.ConclusionsTuYV, relying on the circulative persistent mode of transmission, tended to affect developmental genes. This could increase the proportion of alate aphids, but also affect their locomotion, neuronal activity, and lifespan. CaMV, using the non-circulative non-persistent mode of transmission, had a strong impact on feeding-related genes and in particular those related to salivary proteins. In general, these transcriptome alterations targeted pathways that seem to be particularly adapted to the transmission mode of the corresponding virus and could be evidence of vector manipulation by the virus.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3