Adiponectin Reverses β-Cell Damage and Impaired Insulin Secretion Induced by Obesity

Author:

Munhoz Ana Cláudia,Serna Julian D. C.,Vilas-Boas Eloisa Aparecida,da Silva Camille C. Caldeira,dos Santos Tiago Goss,Mosele Francielle C.ORCID,Felisbino Sergio L.ORCID,Martins Vilma Regina,Kowaltowski Alicia J.ORCID

Abstract

AbstractObesity significantly decreases life expectancy and increases the incidence of age-related dysfunctions, including β-cell dysregulation leading to inadequate insulin secretion. Here, we show that diluted plasma from obese human donors acutely impairs β-cell integrity and insulin secretion relative to plasma from lean subjects. Similar results were observed with diluted sera from obese rats fedad libitum, when compared to sera from lean, calorically-restricted, animals. The damaging effects of obese circulating factors on β-cells occurs in the absence of nutrient overload, and mechanistically involves mitochondrial dysfunction, limiting glucose-supported oxidative phosphorylation and ATP production. We demonstrate that increased levels of adiponectin, as found in lean plasma, are the protective characteristic preserving β-cell function; indeed, sera from adiponectin knockout mice limits β-cell metabolic fluxes relative to controls. Furthermore, oxidative phosphorylation and glucose-sensitive insulin secretion, which are completely abrogated in the absence of this hormone, are restored by the presence of adiponectin alone, surprisingly even in the absence of other serological components, for both the insulin-secreting INS1 cell line and primary islets. The addition of adiponectin to cells treated with plasma from obese donors completely restored β-cell functional integrity, indicating the lack of this hormone was causative of the dysfunction. Overall, our results demonstrate that low circulating adiponectin is a key damaging element for β-cells, and suggest strong therapeutic potential for the modulation of the adiponectin signaling pathway in the prevention of age-related β-cell dysfunction.Abstract FigureGraphical Abstract:Incubation of β-cells with sera or plasma from obese rats and humans hampers mitochondrial oxidative phosphorylation and glucose-stimulated insulin secretion (GSIS) relative to sera and plasma from lean rats and humans. Adiponectin, found at elevated levels in lean subjects, supports β-cell function on its own, in the absence of sera, and also reverses the effects of obese plasma. Prepared using Biorender.com.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3