Multi-Molecular Hyperspectral PRM-SRS Imaging

Author:

Zhang Wenxu,Li Yajuan,Fung Anthony A.ORCID,Li Zhi,Jang Hongje,Zha Honghao,Chen Xiaoping,Gao Fangyuan,Wu Jane Y.,Sheng HuaxinORCID,Yao JunjieORCID,Skowronska-Krawczyk DorotaORCID,Jain SanjayORCID,Shi LingyanORCID

Abstract

AbstractLipids play crucial roles in many biological processes under physiological and pathological conditions. Mapping spatial distribution and examining metabolic dynamics of different lipids in cells and tissues in situ are critical for understanding aging and diseases. Commonly used imaging methods, including mass spectrometry-based technologies or labeled imaging techniques, tend to disrupt the native environment of cells/tissues and have limited spatial or spectral resolution, while traditional optical imaging techniques still lack the capacity to distinguish chemical differences between lipid subtypes. To overcome these limitations, we developed a new hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. With this new approach, we directly visualized and identified multiple lipid species in cells and tissues in situ with high chemical specificity and subcellular resolution. High density lipoprotein (HDL) particles containing non-esterified cholesterol was observed in the kidney, indicating that these pools of cholesterol are ectopic deposits, or have yet to be enriched. We detected a higher Cholesterol to phosphatidylethanolamine (PE) ratio inside the granule cells of hippocampal samples in old mice, suggesting altered membrane lipid synthesis and metabolism in aging brains. PRM-SRS imaging also revealed subcellular distributions of sphingosine and cardiolipin in the human brain sample. Compared with other techniques, PRM-SRS demonstrates unique advantages, including faster data processing and direct user-defined visualization with enhanced chemical specificity for distinguishing clinically relevant lipid subtypes in different organs and species. Our method has broad applications in multiplexed cell and tissue imaging.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3