Abstract
AbstractRNA interference (RNAi) is an emerging and promising therapy for a wide range of respiratory viral infections. This highly specific suppression can be achieved by the introduction of short-interfering RNA (siRNA) into mammalian systems, resulting in the effective reduction of viral load. Unfortunately, this has been hindered by the lack of a good delivery system, especially via the intranasal (IN) route. Here, we have developed an IN siRNA encapsulated lipid nanoparticle (LNP) in vivo delivery system that is highly efficient at targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) in infected mouse lungs. Importantly, IN siRNA delivery without the aid of LNPs abolishes anti-SARS-CoV-2 activity in vivo. Our approach using LNPs as the delivery vehicle overcomes the significant barriers seen with IN delivery of siRNA therapeutics and is a significant advancement in our ability to delivery siRNAs. The studies presented here demonstrates an attractive alternate therapeutic delivery strategy for the treatment of both future and emerging respiratory viral diseases.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献