Systems-level patterns in biological processes are changed under prolongevity interventions and across biological age

Author:

Watanabe KengoORCID,Wilmanski TomaszORCID,Baloni PriyankaORCID,Robinson MaxORCID,Garcia Gonzalo G.ORCID,Hoopmann Michael R.ORCID,Midha Mukul K.ORCID,Baxter David H.,Maes MichalORCID,Morrone Seamus R.ORCID,Crebs Kelly M.ORCID,Kapil CharuORCID,Kusebauch UlrikeORCID,Wiedrick Jack,Lapidus Jodi,Lovejoy Jennifer C.,Magis Andrew T.ORCID,Lausted ChristopherORCID,Roach Jared C.,Glusman GustavoORCID,Cummings Steven R.ORCID,Schork Nicholas J.ORCID,Price Nathan D.ORCID,Hood LeroyORCID,Miller Richard A.ORCID,Moritz Robert L.ORCID,Rappaport NoaORCID

Abstract

AbstractAging manifests as progressive deterioration in cellular and systemic homeostasis, requiring systems-level perspectives to understand the gradual molecular dysregulation of underlying biological processes. Here, we report systems-level changes in the molecular regulation of biological processes under multiple lifespan-extending interventions in mice and across age in humans. In mouse cohorts, Differential Rank Conservation (DIRAC) analyses of liver proteomics and transcriptomics show that mechanistically distinct prolongevity interventions tighten the regulation of aging-related biological modules, including fatty acid metabolism and inflammation processes. An integrated analysis of liver transcriptomics with mouse genome-scale metabolic model supports the shifts in fatty acid metabolism. Additionally, the difference in DIRAC patterns between proteins and transcripts suggests biological modules which may be tightly regulated via cap-independent translation. In a human cohort spanning the majority of the adult lifespan, DIRAC analyses of blood proteomics and metabolomics demonstrate that regulation of biological modules does not monotonically loosen with age; instead, the regulatory patterns shift according to both chronological and biological ages. Our findings highlight the power of systems-level approaches to identifying and characterizing the biological processes involved in aging and longevity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3