Visualization of Retroplacental Clear Space Disruption in a Mouse Model of Placental Accreta

Author:

Badachhape Andrew A.ORCID,Bhandari Prajwal,Devkota Laxman,Srivastava Mayank,Tanifum Eric A.,George Verghese,Fox Karin A.,Yallampalli Chandrasekhar,Annapragada Ananth V.,Ghaghada Ketan B.

Abstract

AbstractIntroductionPrior preclinical studies established the utility of liposomal nanoparticle blood-pool contrast agents in visualizing the retroplacental clear space (RPCS), a marker of normal placentation, while sparing fetuses from exposure because the agent does not cross the placental barrier. In this work we characterized RPCS disruption in a mouse model of placenta accreta spectrum (PAS) using these agents.MethodsContrast-enhanced MRI (CE-MRI) and computed tomography (CE-CT) using liposomal nanoparticles bearing gadolinium (liposomal-Gd) and iodine were performed in pregnant Gab3-/- and wild type (WT) mice at day 16 of gestation. CE-MRI was performed on a 1T scanner using a 2D T1-weighted sequence (100×100×600 µm3 voxels) and CE-CT was performed at a higher resolution (70×70×70 µm3 voxels). Animals were euthanized post-imaging and feto-placental units (FPUs) were harvested for histological examination. RPCS conspicuity was scored through blinded assessment of images.ResultsPregnant Gab3-/- mice show elevated rates of complicated pregnancy. Contrast-enhanced imaging demonstrated frank infiltration of the RPCS of Gab3-/- FPUs. RPCS in Gab3-/- FPUs was smaller in volume, demonstrated a heterogeneous signal profile, and received lower conspicuity scores than WT FPUs. Histology confirmed in vivo findings and demonstrated staining consistent with a thinner RPCS in Gab3-/- FPUs.DiscussionImaging of the Gab3-/- mouse model at late gestation with liposomal contrast agents enabled in vivo characterization of morphological differences in the RPCS that could cause the observed pregnancy complications. An MRI-based method for visualizing the RPCS would be valuable for early detection of invasive placentation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3