miR-221/222 drive synovial fibroblast expansion and pathogenesis of TNF-mediated arthritis

Author:

Roumelioti Fani,Tzaferis Christos,Konstantopoulos Dimitris,Papadopoulou Dimitra,Prados Alejandro,Sakkou Maria,Liakos Anastasios,Chouvardas Panagiotis,Meletakos Theodore,Pandis Yiannis,Karagianni Niki,Denis Maria,Fousteri MariaORCID,Armaka MariettaORCID,Kollias GeorgeORCID

Abstract

AbstractMicroRNAs (miRNAs) constitute fine tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA), however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. We have shown in the past that the expression of the miR-221/222 cluster is upregulated in RA SFs. Here, we demonstrate that miR-221/222 activation is downstream of major inflammatory cytokines, such as TNF and IL-1β, which promote miR-221/222 expression independently. miR-221/222 expression in SFs from the huTNFtg mouse model of arthritis correlates with disease progression. Targeted transgenic overexpression of miR-221/222 in SFs of the huTNFtg mouse model led to further expansion of synovial fibroblasts and disease exacerbation. miR-221/222 overexpression altered the transcriptional profile of SFs igniting pathways involved in cell cycle progression and ECM regulation. Validated targets of miR-221/222 included p27 and p57 cell cycle inhibitors, as well as Smarca1 (a chromatin remodeling component). In contrast, complete genetic ablation of miR-221/222 in arthritic mice led to decreased proliferation of fibroblasts, reduced synovial expansion and attenuated disease. scATAC-seq data analysis revealed increased miR-221/222 gene activity in the pathogenic and activated clusters of the intermediate and lining compartment. Taken together, our results establish an SF-specific pathogenic role of the miR-221/222 cluster in arthritis and suggest that its therapeutic targeting in specific subpopulations should inform the design of novel fibroblast-targeted therapies for human disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3