Suboptimal phenotypic reliability impedes reproducible human neuroscience

Author:

Nikolaidis AkiORCID,Chen Andrew A.ORCID,He Xiaoning,Shinohara Russell,Vogelstein JoshuaORCID,Milham Michael,Shou HaochangORCID

Abstract

Summary ParagraphBiomarkers of behavior and psychiatric illness for cognitive and clinical neuroscience remain out of reach1–4. Suboptimal reliability of biological measurements, such as functional magnetic resonance imaging (fMRI), is increasingly cited as a primary culprit for discouragingly large sample size requirements and poor reproducibility of brain-based biomarker discovery1,5–7. In response, steps are being taken towards optimizing MRI reliability and increasing sample sizes8–11, though this will not be enough. Optimizing biological measurement reliability and increasing sample sizes are necessary but insufficient steps for biomarker discovery; this focus has overlooked the ‘other side of the equation’ - the reliability of clinical and cognitive assessments - which are often suboptimal or unassessed. Through a combination of simulation analysis and empirical studies using neuroimaging data, we demonstrate that the joint reliability of both biological and clinical/cognitive phenotypic measurements must be optimized in order to ensure biomarkers are reproducible and accurate. Even with best-case scenario high reliability neuroimaging measurements and large sample sizes, we show that suboptimal reliability of phenotypic data (i.e., clinical diagnosis, behavioral and cognitive measurements) will continue to impede meaningful biomarker discovery for the field. Improving reliability through development of novel assessments of phenotypic variation is needed, but it is not the sole solution. We emphasize the potential to improve the reliability of established phenotypic methods through aggregation across multiple raters and/or measurements12–15, which is becoming increasingly feasible with recent innovations in data acquisition (e.g., web- and smart-phone-based administration, ecological momentary assessment, burst sampling, wearable devices, multimodal recordings)16–20. We demonstrate that such aggregation can achieve better biomarker discovery for a fraction of the cost engendered by large-scale samples. Although the current study has been motivated by ongoing developments in neuroimaging, the prioritization of reliable phenotyping will revolutionize neurobiological and clinical endeavors that are focused on brain and behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3