Wheat cells show positional responses to invasive Zymoseptoria tritici

Author:

Valente FrancescoORCID,Mansfield JessicaORCID,Herring DanielORCID,Romana GiuseppeORCID,Rodrigues CeciliaORCID,Metz JeremyORCID,Craze MelanieORCID,Bowden SarahORCID,Greenland Andy,Moger JulianORCID,Haynes Ken,Richards David M.ORCID,Wallington EmmaORCID,Deeks Michael J.ORCID

Abstract

SummaryThe stomatal complex of grasses consists of two guard cells and two adjacent subsidiary cells that cooperate during stomatal closure. Zymoseptoria tritici, the main causal agent of Septoria tritici blotch in wheat, enters the host via stomata. Here we test the hypothesis that the stomatal complex shows focused sub-cellular responses to invading Z. tritici hyphae.We have combined live-cell transmission light microscopy, immunofluorescence and CRS microscopy to identify cell wall modifications triggered by hyphal invasion. Furthermore, we have used confocal fluorescence microscopy and automated quantitative image analysis to assess whether host cells respond to hyphae through spatial redistribution of organelles.We find that subsidiary cells construct papillae that are accurately aligned with hyphal position even when hyphae are occluded by guard cells. These are distinct from those induced by powdery mildew, with callose restricted to a crust that surrounds content with a high-amplitude Raman signal in the CH-band. Peroxisome populations in subsidiary cells show distributions with modes weakly correlated with hyphal position but do not differ significantly between compatible and incompatible interactions.Our data suggest local changes to cell wall architecture and focal accumulation of organelles in subsidiary cells could play roles in crop defence during host leaf penetration by Z. tritici. Molecular strategies to amplify these responses may provide novel routes for crop protection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3