Displacement experiments provide evidence for path integration in Drosophila

Author:

Titova Anna V.,Kau Benedikt E.,Tibor Shir,Mach JanaORCID,Vo-Doan T. ThangORCID,Wittlinger MatthiasORCID,Straw Andrew D.ORCID

Abstract

ABSTRACTLike many other animals, insects are capable of returning to previously visited locations using path integration. Recently, Drosophila has been added to the list of insects thought capable of this navigational memory. Existing experimental evidence, however, has a potential confound. Here we show that pheromones deposited at the site of reward might enable flies to find previously rewarding locations even without memory. Thus, we designed an experiment to determine if flies can use path integration memory despite potential pheromonal cues by displacing the flies shortly after an optogenetic reward. We found that rewarded flies returned to the location predicted by a memory-based model. Several analyses are consistent with path integration as the mechanism by which flies returned to the reward. We conclude that while pheromones may often be important in fly navigation and must be carefully controlled in future experiments, Drosophila may indeed be capable of performing path integration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Networks for Navigation: From Connections to Computations;Annual Review of Neuroscience;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3