Evolutionary innovation through transcription factor promiscuity in microbes is constrained by pre-existing gene regulatory network architecture

Author:

Shepherd Matthew J.ORCID,Pierce Aidan P.ORCID,Taylor Tiffany B.ORCID

Abstract

AbstractThe survival of a population during environmental shifts depends on whether the rate of phenotypic adaptation keeps up with the rate of changing conditions. A common way to achieve this is via change to gene regulatory network (GRN) connections – known as rewiring – that facilitate novel interactions and innovation of transcription factors. To understand the success of rapidly adapting organisms, we therefore need to determine the rules that create and constrain opportunities for GRN rewiring.Here, using an experimental microbial model system we reveal a hierarchy among transcription factors that are rewired to rescue lost function, with alternative rewiring pathways only unmasked after the preferred pathway is eliminated. We identify three key properties - high activation, high expression, and pre-existing low-level affinity for novel target genes – that facilitate transcription factor innovation via gain of functional promiscuity. Ease of acquiring these properties is constrained by pre- existing GRN architecture, which was overcome in our experimental system by both targeted and global network alterations. This work reveals the key properties that determine transcription factor evolvability, and as such, the evolution of GRNs.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3