Abstract
AbstractBackgroundThe herbal products market is expanding and creating a bottleneck for raw materials. Hence, economically motivated adulteration has a high prevalence. DNA barcoding and species-specific PCR assays are now revolutionising the molecular identification of herbal products and are included in a number of pharmacopoeias for the identification of raw materials. High-throughput sequencing with barcoding advances toward metabarcoding, which enables the identification of unintentionally or intentionally unlabelled plant material present in herbal products. Brahmi is one of the most commercially significant and nootropic botanicals, with great controversy over the terms “Brahmi” being used to describe both Bacopa monneri (BM) and Centella asiatica (CA) species.PurposeThis study evaluates DNA-based methods for Brahmi herbal products with the traditional HPLC-based analytical approach in order to assess their effectiveness.MethodsWe employed a species-specific PCR assay, DNA metabarcoding using rbcL minibarcode, and HPLC to detect the presence of the Brahmi (either BM or CA) in eighteen market samples. All the methods have been validated using in-house blended formulations.ResultsComprehensive analysis of all three methods revealed the presence of 22.2%, 55.6%, and 50.0% of Brahmi by PCR assay, DNA metabarcoding, and HPLC, respectively, in Brahmi market formulations, whereas blended formulations only exhibited targeted plant species with all three methods.ConclusionSpecies-specific PCR can be used as a cost-effective and rapid method to detect the presence of the Brahmi, while in high-throughput methods, DNA metabarcoding can be used to detect the presence of widespread adulterated botanicals, and further, bioactive compounds could be detected by HPLC. These results emphasise the need for quality control of the marketed Brahmi herbal products as well as the implementation of all methodologies in accordance with fit for purpose.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献