Multimodal surveillance of SARS-CoV-2 at a university enables development of a robust outbreak response framework

Author:

Petros Brittany A.ORCID,Paull Jillian S.ORCID,Tomkins-Tinch Christopher H.ORCID,Loftness Bryn C.ORCID,DeRuff Katherine C.,Nair Parvathy,Gionet Gabrielle L.,Benz Aaron,Brock-Fisher Taylor,Hughes Michael,Yurkovetskiy Leonid,Mulaudzi Shandukani,Leenerman Emma,Nyalile Thomas,Moreno Gage K.,Specht Ivan,Sani Kian,Adams Gordon,Babet Simone V.,Baron Emily,Blank Jesse T.,Boehm Chloe,Botti-Lodovico Yolanda,Brown Jeremy,Buisker Adam R.,Burcham Timothy,Chylek Lily,Cronan Paul,Desreumaux Valentine,Doss Megan,Flynn Belinda,Gladden-Young Adrianne,Glennon Olivia,Harmon Hunter D.,Hook Thomas V.,Kary Anton,King Clay,Loreth Christine,Marrs Libby,McQuade Kyle J.,Milton Thorsen T.,Mulford Jada M.,Oba Kyle,Pearlman Leah,Schifferli Mark,Schmidt Madelyn J.,Tandus Grace M.,Tyler Andy,Vodzak Megan E.,Bevill Kelly Krohn,Colubri Andres,MacInnis Bronwyn L.,Ozsoy A. Zeynep,Parrie Eric,Sholtes Kari,Siddle Katherine J.ORCID,Fry Ben,Luban JeremyORCID,Park Daniel J.,Marshall John,Bronson Amy,Schaffner Stephen F.,Sabeti Pardis C.ORCID

Abstract

AbstractUniversities are particularly vulnerable to infectious disease outbreaks and are also ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures when outbreaks occur. Here, we introduce a SARS-CoV-2 surveillance and response framework based on high-resolution, multimodal data collected during the 2020-2021 academic year at Colorado Mesa University. We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and wifi-based co-location data) alongside pathogen surveillance data (wastewater, random, and reflexive diagnostic testing; and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy decisions. We quantified group attributes that increased disease risk, and highlighted parallels between traditional and wifi-based contact tracing. We additionally used clinical and environmental viral sequencing to identify cryptic transmission, cluster overdispersion, and novel lineages or mutations. Ultimately, we used distinct data types to identify information that may help shape institutional policy and to develop a model of pathogen surveillance suitable for the future of outbreak preparedness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3