Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY

Author:

Kim Colin Y.ORCID,Mitchell Andrew J.,Kastner David W.ORCID,Albright Claire E.,Gutierrez Michael,Glinkerman Christopher M.ORCID,Kulik Heather J.,Weng Jing-KeORCID

Abstract

AbstractPlants contain rapidly evolving specialized metabolic enzymes to support the synthesis of a myriad of functionally diverse natural products. In the case of coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered in Arabidopsis that catalyzes coumarin formation fromo-hydroxylatedtrans-hydroxycinnamoyl-CoA substrates. COSY is the first and only BAHD enzyme known to date that catalyzes an intramolecular acyl transfer reaction. Here we combine structural, biochemical, and computational approaches to investigate the mechanistic basis for the unique coumarin synthase activity of COSY. Comparative analyses of crystal structures ofArabidopsis thalianaCOSY relative to other BAHD proteins reveal that COSY possesses an unconventional active-site configuration adapted to its specialized activity. Through deuterium exchange experiments, we discover a unique proton exchange mechanism at the α-carbon of theo-hydroxylatedtrans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Mutagenesis studies and quantum mechanical cluster modeling further support that this mechanism is key to COSY’s ability to lower the activation energy of thetrans-to-cisisomerization of the hydroxycinnamoyl-CoA substrates, a critical rate-limiting step leading to coumarin production. This study unveils the emergence of an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on the potential evolutionary origin of COSY and its recruitment to the evolutionarily new coumarin biosynthetic pathway in eudicots.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3