Cell cycle and temporal transcription factors regulate proliferation and neuronal diversity of dedifferentiation-derived neural stem cells

Author:

Veen KellieORCID,Froldi Francesca,Dong QianORCID,Alvarez-Ochoa EdelORCID,Nguyen Phuong-KhanhORCID,Harvey Kieran F,McMullen John P DORCID,Marshall OwenORCID,Jusuf Patricia R,Cheng Louise YORCID

Abstract

AbstractDedifferentiation is the reversion of differentiated cells to a stem cell like fate, whereby, the gene expression program of mature cells is altered and genes associated with multipotency are expressed. Appropriate terminal differentiation of NSCs is essential for restricting the overall number of neurons produced; in addition, faithful production of neuronal subtypes that populate the brain is important for NSC function. Both characteristics of NSCs are specified through temporal patterning of the NSCs driven by the successive expression of temporal transcription factors (tTFs). In this study, we found that ectopic NSCs induced via bHLH transcription factor Deadpan (Dpn) expression fail to undergo timely expression of temporal transcription factors (tTFs), where they express mid-tTF, Sloppy-paired 1 (Slp-1) and fail to express late-tTF Tailless (Tll); consequently generating an excess of Twin of eyeless (Toy) positive neurons at the expense of Reversed polarity (Repo) positive glial cells. In addition to disrupted production of neuronal/glial progeny, Dpn overexpression also resulted in stalled progression through the cell cycle, and a failure to undergo timely terminal differentiation. Mechanistically, DamID studies demonstrated that Dpn directly binds to both Dichaete (D), a Sox-box transcription factor known to repress Slp-1, as well as a number of cell cycle genes. Promoting cell cycle progression or overexpression of D were able to re-trigger the progression of the temporal series in dedifferentiated NBs, restoring both neuronal diversity and timely NB terminal differentiation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3