AlphaViz: Visualization and validation of critical proteomics data directly at the raw data level

Author:

Voytik EugeniaORCID,Skowronek PatriciaORCID,Zeng Wen-FengORCID,Tanzer Maria C.ORCID,Brunner Andreas-DavidORCID,Thielert MarvinORCID,Strauss Maximilian T.ORCID,Willems SanderORCID,Mann MatthiasORCID

Abstract

ABSTRACTAlthough current mass spectrometry (MS)-based proteomics identifies and quantifies thousands of proteins and (modified) peptides, only a minority of them are subjected to in-depth downstream analysis. With the advent of automated processing workflows, biologically or clinically important results within a study are rarely validated by visualization of the underlying raw information. Current tools are often not integrated into the overall analysis nor readily extendable with new approaches. To remedy this, we developed AlphaViz, an open-source Python package to superimpose output from common analysis workflows on the raw data for easy visualization and validation of protein and peptide identifications. AlphaViz takes advantage of recent breakthroughs in the deep learning-assisted prediction of experimental peptide properties to allow manual assessment of the expected versus measured peptide result. We focused on the visualization of the 4-dimensional data cuboid provided by Bruker TimsTOF instruments, where the ion mobility dimension, besides intensity and retention time, can be predicted and used for verification. We illustrate how AlphaViz can quickly validate or invalidate peptide identifications regardless of the score given to them by automated workflows. Furthermore, we provide a ‘predict mode’ that can locate peptides present in the raw data but not reported by the search engine. This is illustrated the recovery of missing values from experimental replicates. Applied to phosphoproteomics, we show how key signaling nodes can be validated to enhance confidence for downstream interpretation or follow-up experiments. AlphaViz follows standards for open-source software development and features an easy-to-install graphical user interface for end-users and a modular Python package for bioinformaticians. Validation of critical proteomics results should now become a standard feature in MS-based proteomics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3