Cell size regulation and proliferation fluctuations in single-cell derived colonies

Author:

Nieto CésarORCID,Vargas-García CésarORCID,Pedraza Juan ManuelORCID,Singh AbhyudaiORCID

Abstract

AbstractExponentially growing cells regulate their size by controlling their timing of division. Since two daughter cells are born as a result of this cell splitting, cell size regulation has a direct connection with cell proliferation dynamics. Recent models found more clues about this connection by suggesting that division occurs at a size-dependent rate. In this article, we propose a framework that couples the stochastic transient dynamics of both the cell size and the number of cells in the initial expansion of a single-cell-derived colony. We describe the population from the two most common perspectives. The first is known as Single Lineage: where only one cell is followed in each colony, and the second is Population Snapshots: where all cells in different colonies are followed. At a low number of cells, we propose a third perspective; Single Colony, where one tracks only cells with a common ancestor. We observe how the statistics of these three approaches are different at low numbers and how the Single Colony perspective tends to Population Snapshots at high numbers. Analyzing colony-to-colony fluctuations in the number of cells, we report an intriguing find: the extent of fluctuations first increases with time and then decreases to approach zero at large numbers of cells. In contrast, in classical size-independent proliferation models, where cell division occurs based on a pure timing mechanism, fluctuations in cell number increase monotonically over time to approach a nonzero value. We systematically study these differences and the convergence speed using different size control strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3