An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis

Author:

Bhaduri SatarupaORCID,Aguayo AnalineORCID,Ohno YusukeORCID,Proietto MarcoORCID,Jung Jasmine,Wang Isabel,Kandel RachelORCID,Singh Narinderbir,Ibrahim Ikran,Fulzele AmitORCID,Bennett Eric,Kihara AkioORCID,Neal Sonya E.ORCID

Abstract

SUMMARYNearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER) where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated-degradation (ERAD) removes these clients from the ER membrane to the cytosol in a process known as retrotranslocation. Our recent work demonstrates that rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated integral membrane ERAD substrates. To survey for potential interaction partners of Dfm1, we performed protein-proximity labeling by BioID (proximity-dependent biotin identification) followed by mass spectrometry and identified several interacting proteins known to play a role in the sphingolipid biosynthesis pathway. Specifically, we found that Dfm1 physically interacts with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components and is critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. We demonstrate for the first time that Dfm1 has a role in ER export, a function that is independent of Dfm1’s canonical ERAD retrotranslocation function. Specifically, we show that loss of Dfm1 results in the accumulation of phosphorylated Orm2 at the ER, suggesting a novel role for Dfm1 in controlling Orm2 export from the ER and its subsequent degradation by EGAD. Moreover, recruitment of Cdc48 by Dfm1, which is critical for its role in ERAD retrotranslocation, is dispensable for Dfm1’s role in ER export. Given that the accumulation of human Orm2 homologs, ORMDLs, are associated with many maladies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3