Hepatic lipid overload potentiates biliary epithelial cell activation via E2Fs

Author:

Yildiz Ece,Alam Gaby El,Perino Alessia,Jalil Antoine,Denechaud Pierre-DamienORCID,Huber Katharina,Fajas LluisORCID,Auwerx Johan,Sorrentino Giovanni,Schoonjans KristinaORCID

Abstract

AbstractDuring severe or chronic hepatic injury, biliary epithelial cells (BECs), also known as cholangiocytes, undergo rapid reprogramming and proliferation, a process known as ductular reaction (DR), and allow liver regeneration by differentiating into both functional cholangiocytes and hepatocytes. While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids upon fatty acid (FA) treatment in BEC-derived organoids, and during high-fat diet feeding in mice. Lipid overload induces a metabolic rewiring to support the conversion of adult cholangiocytes into active BECs. Mechanistically, we found that lipid overload unleashes the activation of the E2F transcription factors in BECs, which drives cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to initiate a DR, without epithelial damage, and provide new insights into the mechanistic basis of BEC activation, revealing unexpected connections between lipid metabolism, stemness, and regeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3