Mouse primary visual cortex neurons respond to the illusory “darker than black” in neon color spreading

Author:

Saeedi AlirezaORCID,Wang Kun,Nikpourian Ghazaleh,Bartels AndreasORCID,Totah Nelson K.ORCID,Logothetis Nikos K.,Watanabe Masataka

Abstract

Illusions are a powerful tool for studying the single neuron correlates of perception. Here, we introduce the neon color spreading (NCS) illusion in mice and report the neuronal correlates of illusory brightness, which has heretofore only been studied using human fMRI. We designed a novel NCS paradigm to evoke the percept of an illusory drifting grating and analyzed the activity of 520 single units in the mouse primary visual cortex (V1). A substantial proportion of V1 single units (60.5%) responded to illusory gratings with direction tuning matched to their preferred direction, which was determined using physically presented luminance-defined gratings (LDG). Moreover, by presenting LDG gratings with a 180° phase shift relative to NCs gratings, we show that spatial phase tuning shifted 180° for most single units. This finding conclusively demonstrates that V1 single units respond to illusory brightness. Using this novel mouse paradigm, we show that responses to illusory gratings have a lower magnitude and are delayed relative to physical gratings. We determined where V1 single units fell in the V1 cellular hierarchy (based on their susceptibility to surround suppression, their putative classification as interneuron or pyramidal neuron, and designation as a simple or complex cell) and found that higher-level V1 single units are more responsive to NCS stimuli. These findings resolve the debate of whether V1 is involved in illusory brightness processing and reveal a V1 hierarchical organization in which higher-level neurons are pivotal to the processing of illusory qualities, such as brightness.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3