Abstract
AbstractMotivationClarifying how hematopoietic stem cells differentiate into mature cell types is important for understanding how they attain specific functions and offers the potential for therapeutic manipulation. Over the past decades, clonal tracking has proven to be capable of unveiling population dynamics and hierarchical relationships in vivo. For this reason, clonal tracking studies are required for safety and long-term efficacy assessment in gene therapy. However, many standard clonal tracking studies consider only a subset of cell-types and are subject to noise.ResultsIn this work, we propose a stochastic framework that investigates the dynamics of cell differentiation from typical clonal tracking data subject to measurement noise, false-negative errors, and systematically unobserved cell types. Our framework is based on stochastic reaction networks combined with extended Kalman filtering and Rauch-Tung-Striebel smoothing. Our tool can provide statistical support to biologists in gene therapy clonal tracking studies to better understand clonal reconstitution dynamics.AvailabilityThe stochastic framework is implemented in the package Karen which is available for download at https://github.com/delcore-luca/Karen. The code that supports the findings of this study is openly available at https://github.com/delcore-luca/CellDifferentiationNetworks.Contactl.del.core@rug.nl
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Karen: Kalman Reaction Networks;CRAN: Contributed Packages;2022-09-15