Identification of a Broadly Fibrogenic Macrophage Subset Induced by Type 3 Inflammation in Human and Murine Liver and Lung Fibrosis

Author:

Fabre ThomasORCID,Barron Alexander M. S.ORCID,Christensen Stephen M.ORCID,Asano Shoh,Wadsworth Marc H.,Chen Xiao,Wang Ju,McMahon James,Schlerman Frank,White Alexis,Kravarik Kellie,Fisher Andrew J.,Borthwick Lee A.,Hart Kevin M.,Henderson Neil C.,Wynn Thomas A.ORCID,Dower Ken

Abstract

AbstractMacrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in the progression and resolution of fibrosis. Identifying the unique fibrogenic macrophages that are found in human fibrotic tissues could lead to new and more effective treatments for fibrosis. Here we used human liver and lung single cell RNA sequencing datasets to identify a unique subset of CD9+ TREM2+ macrophages expressing SPP1, GPNMB, FABP5, and CD63 with strong pro-fibrotic activity. This population was validated across orthogonal techniques, species and tissues. These macrophages were enriched at the outside edges of scarring adjacent to activated mesenchymal cells, and in the fibrotic niche across species and organs. Neutrophils producing the type 3 cytokines GM-CSF and IL-17A, and expressing MMP9, which participates in the activation of TGF-β1, clustered with these scar-associated macrophages. Using in vitro primary human cell assays, we determined that GM-CSF, IL-17A and TGF-β1 drive the differentiation of these scar-associated macrophages, and that co-culture of monocyte-derived macrophages with hepatic stellate cells and TGF-β1 augmented type 1 collagen deposition. In vivo blockade of GM-CSF, IL-17A or TGF-β1 with small or large molecules reduced scar-associated macrophage expansion and fibrosis in multiple models of hepatic and pulmonary fibrosis. Our work demonstrates that a specific scar-associated macrophage population is linked with fibrosis across species and tissues. It further provides a strategy for unbiased discovery, triage and preclinical validation of therapeutic targets within this fibrogenic macrophage population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3