Dynamics of Borrelia Burgdorferi Invasion and Intravasation in a Tissue Engineered Dermal Microvessel Model

Author:

Guo Zhaobin,Zhao Nan,Chung Tracy D.,Singh Anjan,Pandey Ikshu,Wang Linus,Gu Xinyue,Ademola Aisha,Linville Raleigh M.,Pal Utpal,Dumler J. Stephen,Searson Peter C.

Abstract

AbstractLyme disease is a tick-borne disease prevalent in North America, Europe, and Asia. Dissemination of vector-borne pathogens, such as Borrelia burgdorferi (Bb), results in infection of distant tissues and is the main contributor to poor outcomes. Despite the accumulated knowledge from epidemiological, in vitro, and in animal studies, the understanding of dissemination remains incomplete with several important knowledge gaps, especially related to invasion and intravasation at the site of a tick bite, which cannot be readily studied in animal models or humans. To elucidate the mechanistic details of these processes we developed a tissue-engineered human dermal microvessel model. Fluorescently-labeled Bb (B31 strain) were injected into the extracellular matrix (ECM) of the model to mimic tick inoculation. High resolution, confocal imaging was performed to visualize Bb migration in the ECM and intravasation into circulation. From analysis of migration paths we found no evidence to support adhesin-mediated interactions between Bb and components of the ECM or basement membrane, suggesting that collagen fibers serve as inert obstacles to migration. Transendothelial migration occurred at cell-cell junctions and was relatively fast, consistent with Bb swimming in ECM. In addition, we found that Bb alone can induce endothelium activation, resulting in increased immune cell adhesion but no changes in global or local permeability. Together these results provide new insight into the minimum requirements for dissemination of Bb at the site of a tick bite, and highlight how tissue-engineered models are complementary to animal models in visualizing dynamic processes associated with vector-borne pathogens.Significance StatementUsing a tissue-engineered human dermal microvessel model we reveal new insight into the invasion and intravasation of Borrelia burgdorferi (Bb), a causative agent of Lyme disease in North America, following a tick bite. These results show how tissue-engineered models enable imaging of dynamic processes that are challenging in animal models or human subjects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3