Protein as evolvable functionally-constrained amorphous matter

Author:

Tripathy Madhusmita,Srivastava Anand,Sastry Srikanth,Rao Madan

Abstract

AbstractWe explore current ideas around the representation of a protein as an amorphous material, in turn represented by an abstract graph 𝒢 with edges weighted by elastic stiffnesses. By embedding this graph in physical space, we can map every graph to a spectrum of conformational fluctuations and responses (as a result of say, ligand-binding). This sets up a “genotype-phenotype” map, which we use to evolve the amorphous material to select for fitness. Using this, we study the emergence of allosteric interaction, hinge joint, crack formation and a slide bolt in functional proteins such as Adenylate kinase, HSP90, Calmodulin and GPCR proteins. We find that these emergent features are associated with specific geometries and mode spectra of floppy or liquid-like regions. Our analysis provides insight into understanding the architectural demands on a protein that enable a prescribed function and its stability to mutations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3