Efficacy of a patient isolation hood in reducing exposure to airborne infectious virus in a simulated healthcare setting

Author:

Lee Leo Yi YangORCID,Landry Shane AORCID,Jamriska MilanORCID,Subedi DineshORCID,Joosten Simon A,Barr Jeremy JORCID,Brown Reece,Kevin Kevin,Schofield RobynORCID,Monty JasonORCID,Subbarao KantaORCID,McGain ForbesORCID

Abstract

AbstractBackgroundHealthcare workers treating patients with SARS-CoV-2 are at risk of infection from patient-emitted virus-laden aerosols. We quantified the reduction of airborne infectious virus in a simulated hospital room when a ventilated patient isolation (McMonty) hood was in use.MethodsWe nebulised 109 plaque forming units (PFU) of bacteriophage PhiX174 virus into a 35.1m3 room with a hood active or inactive. The airborne concentration of infectious virus was measured by BioSpot-VIVAS and settle plates using plaque assay quantification on the bacterial host Escherichia coli C. The particle number concentration (PNC) was monitored continuously using an optical particle sizer.ResultsMedian airborne viral concentration in the room reached 1.41 × 105 PFU.m-3 with the hood inactive. Using the active hood as source containment reduced infectious virus concentration by 374-fold in air samples. This was associated with a 109-fold reduction in total airborne particle number escape rate. The deposition of infectious virus on the surface of settle plates was reduced by 87-fold.ConclusionsThe isolation hood significantly reduced airborne infectious virus exposure in a simulated hospital room. Our findings support the use of the hood to limit exposure of healthcare workers to airborne virus in clinical environments.Lay summaryCOVID-19 patients exhale aerosol particles which can potentially carry infectious viruses into the hospital environment, putting healthcare workers at risk of infection. This risk can be reduced by proper use of personal protective equipment (PPE) to protect workers from virus exposure. More effective strategies, however, aim to provide source control, reducing the amount of virus-contaminated air that is exhaled into the hospital room.The McMonty isolation hood has been developed to trap and decontaminate the air around an infected patient. We tested the efficacy of the hood using a live virus model to mimic a COVID-19 patient in a hospital room. Using the McMonty hood reduced the amount of exhaled air particles in the room by over 109-times. In our tests, people working in the room were exposed to 374-times less infectious virus in the air, and room surfaces were 87-times less contaminated. Our study supports using devices like the McMonty hood in combination with PPE to keep healthcare workers safe from virus exposure at work.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Infection and mortality of healthcare workers worldwide from COVID-19: a systematic review

2. World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. Available at: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions.

3. Airborne transmission of SARS-CoV-2: The world should face the reality

4. (NIOSH) TNIfOSaH. Hierarchy of Controls. Available at: https://www.cdc.gov/niosh/topics/hierarchy/default.html.

5. CoMix: comparing mixing patterns in the Belgian population during and after lockdown

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3