A comprehensive proteomic and bioinformatics analysis of human spinal cord injury plasma identifies proteins associated with the complement cascade and liver function as potential prognostic indicators of neurological outcome

Author:

Bernardo Harrington Gabriel MateusORCID,Cool PaulORCID,Hulme CharlotteORCID,Osman Aheed,Chowdhury Joy RoyORCID,Kumar Naveen,Budithi Srinivasa,Wright Karina

Abstract

1.Abstract1.1.IntroductionSpinal Cord Injury (SCI) is a major cause of disability, with complications post-injury often leading to life-long health issues with need of extensive treatment. Neurological outcome post-SCI can be variable and difficult to predict, particularly in incomplete injured patients. The identification of specific SCI biomarkers in blood, may be able to improve prognostics in the field. This study has utilised proteomic and bioinformatics methodologies to investigate differentially expressed proteins in plasma samples across human SCI cohorts with the aim of identifying prognostic biomarkers and biological pathway alterations that relate to neurological outcome.1.2.Methods and MaterialsBlood samples were taken, following informed consent, from ASIA impairment scale (AIS) grade C “Improvers” (those who experienced an AIS grade improvement) and “Non-Improvers” (No AIS change), and AIS grade A and D at <2 weeks (“Acute”) and approx. 3 months (“Sub-acute”) post-injury. The total protein concentration from each sample was extracted, with pooled samples being labelled and non-pooled samples treated with ProteoMiner™ beads. Samples were then analysed using two 4-plex isobaric tag for relative and absolute quantification (iTRAQ) analyses and a label-free experiment for comparison, before quantifying with mass spectrometry. Data are available via ProteomeXchange with identifiers PXD035025 and PXD035072 for the iTRAQ and label-free experiments respectively.Proteomic datasets were analysed using OpenMS (version 2.6.0). R (version 4.1.4) and in particular, the R packages MSstats (version 4.0.1) and pathview (version 1.32.0) were used for downstream analysis. Proteins of interest identified from this analysis were further validated by enzyme-linked immunosorbent assay (ELISA).1.3.ResultsThe data demonstrated proteomic differences between the cohorts, with the results from the iTRAQ approach supporting those of the label-free analysis. A total of 79 and 87 differentially abundant proteins across AIS and longitudinal groups were identified from the iTRAQ and label-free analyses, respectively. Alpha-2-macroglobulin (A2M), retinol binding protein 4 (RBP4), serum amyloid A1 (SAA1), Peroxiredoxin 2, Apolipoprotein A1 (ApoA1) and several immunoglobulins were identified as bio-logically relevant and differentially abundant, with potential as individual prognostic biomarkers of neurological outcome. Bioinformatics analyses revealed that the majority of differentially abundant proteins were components of the complement cascade and most interacted directly with the liver.1.4.ConclusionsMany of the proteins of interest identified using proteomics were detected only in a single group and therefore have potential as a binary (present or absent) biomarkers, RBP4 and PRX-2 in particular. Additional investigations into the chronology of these proteins, and their levels in other tissues (cerebrospinal fluid in particular) are needed to better understand the underlying pathophysiology, including any potentially modifiable targets. Pathway analysis highlighted the complement cascade as being significant across groups of differential functional recovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3