DIFFERENTIAL SARS-COV-2 ANTIGEN SPECIFICITY OF THE HUMORAL RESPONSE IN INACTIVATED VIRUS-VACCINATED, CONVALESCENT, AND BREAKTHROUGH SUBJECTS

Author:

Duarte Luisa F.ORCID,Vázquez YaneisiORCID,Diethelm-Varela BenjamínORCID,Pavez Valentina,Berríos-Rojas RoslyeORCID,White Jessica A.,Kalergis Alexis M.ORCID,Bueno Susan M.ORCID,González Pablo A.ORCID

Abstract

ABSTRACTAnalytical methods for the differential determination between natural infection with SARS- CoV-2 vs. immunity elicited by vaccination or infection after immunization (breakthrough cases) represent attractive new research venues in the context of the ongoing COVID-19 pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Herein, we set out to compare humoral responses against several SARS-CoV-2 structural and non-structural proteins in infected unvaccinated (convalescent), vaccinated, as well as vaccinated and infected (breakthrough) individuals. Our results indicate that immunization with an inactivated SARS-CoV-2 vaccine (CoronaVac) induces significantly higher levels of IgG antibodies against the membrane (M) protein of SARS-CoV-2 as compared to convalescent subjects both, after the primary vaccination schedule and after a booster dose. Moreover, we found that CoronaVac-immunized individuals, after receiving a third vaccine shot, display equivalent levels of N-specific IgG antibodies as convalescents subjects. Regarding non-structural viral proteins, for the two viral proteins ORF3a and NSP8, IgG antibodies were produced in more than 50% of the convalescent subjects. Finally, a logistic regression model and a receiver operating characteristic (ROC) analysis show that combined detection of M and N proteins may be useful as a biomarker to differentiate breakthrough cases from vaccinated and convalescent individuals that did not receive prior vaccination. Taken together, these results suggest that multiple SARS-CoV-2 antigens may be used as differential biomarkers for distinguishing natural infection from vaccination.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3