Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems

Author:

Rieder Jessica,Kapopoulou Adamandia,Bank ClaudiaORCID,Adrian-Kalchhauser IreneORCID

Abstract

AbstractRecirculating aquaculture systems (RAS) heavily depend on microbial communities to maintain water quality. These communities therefore influence the growth, development, and welfare of farmed fish. With the increasing socio-economic role of fish farming e.g. regarding food security, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspective. However, the data situation regarding the composition of microbial communities within RAS is patchy. Since this is partly ascribed to method choices, there clearly is a need for accurate, standardized, and user-friendly methods to study microbial communities in aquaculture systems.Here, we compare the performance of 16S amplicon sequencing, Pac-Bio long-read amplicon sequencing, and amplification-free shotgun metagenomics in the characterization of microbial communities in two commercial-size RAS fish farms. We show that, even though primer choice affects read quality, diversity, and assigned taxa, distinct primer pairs uncover similar spatio-temporal patterns between sample types, farms, and time points. We find that long-read amplicons underperform regarding quantitative resolution of spatio-temporal patterns, but allow for species-level identification of functional services and pathogens. Finally, shotgun metagenomics data identified fungi, viruses, and bacteriophages, opening avenues for an exploration of natural approaches regarding antipathogenic treatments. Overall, the datasets agreed on major prokaryotic players.In conclusion, different sequencing approaches yield overlapping and highly complementary results, with each contributing data no other approach could. Such a tiered approach therefore constitutes a practical and cost-effective strategy for obtaining the maximum amount of information on aquaculture microbial communities. These data could lead to better farm management practices and at the same time inform basic research on community evolution dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3