Evolutionary Diversification of MethanotrophicCa. Methanophagales (ANME-1) and Their Expansive Virome

Author:

Laso-Pérez RafaelORCID,Wu Fabai,Crémière Antoine,Speth Daan R.,Magyar John S.,Krupovic MartORCID,Orphan Victoria J.ORCID

Abstract

AbstractCandidatusMethanophagales’ (ANME-1) is a major order-level clade of archaea responsible for methane removal in deep-sea sediments through the anaerobic oxidation of methane. Yet the extent of their diversity and factors which drive their dynamics and evolution remain poorly understood. Here, by sampling hydrothermal rocks and sediments, we expand their phylogenetic diversity and characterize a new deep-branching, thermophilic ANME-1 family, ‘CandidatusMethanospirareceae’ (ANME-1c). They are phylogenetically closest to the short-chain-alkane oxidizers ‘CandidatusSyntrophoarchaeales’ and ‘CandidatusAlkanophagales’, and encode ancestral features including a methyl coenzyme M reductase chaperone McrD and a hydrogenase complex. Global phylogeny and near-complete genomes clarified that the debated hydrogen metabolism within ANME-1 is an ancient trait that was vertically inherited but differentially lost during lineage diversification. Our expanded genomic and metagenomic sampling allowed the discovery of viruses constituting 3 new orders and 16 new families that so far are exclusive to ANME-1 hosts. These viruses represent 4 major archaeal virus assemblages, characterized by tailless icosahedral, head-tailed, rod-shaped, and spindle-shaped virions, but display unique structural and replicative signatures. Exemplified by the analyses of thymidylate synthases that unveiled a virus-mediated ancestral process of host gene displacement, this expansive ANME-1 virome carries a large gene repertoire that can influence their hosts across different timescales. Our study thus puts forth an emerging evolutionary continuum between anaerobic methane and short-chain-alkane oxidizers and opens doors for exploring the impacts of viruses on the dynamics and evolution of the anaerobic methane-driven ecosystems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3