Dendrite architecture determines mitochondrial distribution patterns in vivo

Author:

Donovan Eavan J.ORCID,Agrawal AnamikaORCID,Liberman NicoleORCID,Kalai Jordan I.ORCID,Chua Nicholas J.ORCID,Koslover Elena F.ORCID,Barnhart Erin L.ORCID

Abstract

SUMMARYMitochondria are critical for neuronal function and must be reliably distributed through complex neuronal architectures. By quantifying in vivo mitochondrial transport and localization patterns in the dendrites of Drosophila visual system neurons, we show that mitochondria make up a dynamic system at steady-state, with significant transport of individual mitochondria within a stable global pattern. Mitochondrial motility patterns are unaffected by visual input, suggesting that neuronal activity does not directly regulate mitochondrial localization in vivo. Instead, we present a mathematical model in which four simple scaling rules enable the robust self-organization of the mitochondrial population. Experimental measurements of dendrite morphology validate key model predictions: to maintain equitable distribution of mitochondria across asymmetrically branched subtrees, dendritic branch points obey a parent-daughter power law that preserves cross-sectional area, and thicker trunks support proportionally bushier subtrees. Altogether, we propose that “housekeeping” requirements, including the need to maintain steady-state mitochondrial distributions, impose constraints on neuronal architecture.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Optimizing mitochondrial maintenance in extended neuronal projections;Plos Comput Biol,2021

2. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons;Developmental Neurobiology,2008

3. Aric A. Hagberg , D.A.S.a.P.J.S. (2008). Exploring network structure, dynamics, and function using NetworkX. Paper presented at: Proceedings of the 7th Python in Science Conference (SciPy2008).

4. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin

5. GLUT4 Mobilization Supports Energetic Demands of Active Synapses

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3