Cortical dynamics of speech feedback control in non-fluent Primary Progressive Aphasia

Author:

Kothare HardikORCID,Ranasinghe Kamalini G.,Hinkley Leighton B.,Mizuiri Danielle,Licata Abigail,Lauricella Michael,Honma Susanne,Borghesani Valentina,Dale Corby,Shwe Wendy,Welch Ariane,Miller Zachary,Gorno-Tempini Maria Luisa,Houde John F.,Nagarajan Srikantan S.

Abstract

AbstractPrimary Progressive Aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. The non-fluent variant of PPA (nfvPPA) is characterised by impaired motor speech and agrammatism. To date, no study in nfvPPA patients has either examined speech motor control behaviour or imaged the speech motor control network during vocal production. Here, we did this using a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations with voxel-based morphometry (VBM). We examined task-induced non-phase-locked neural oscillatory activity during a vocal motor control task, where participants were prompted to phonate the vowel /□/ for ∼2.4s while the pitch of their auditory feedback was shifted either up or down by 100 cents for a period of 400ms mid-utterance. Participants were 18 nfvPPA patients (14 female, mean age = 67.79 ± 8.02 years) and 17 controls (13 female, mean age = 64.81 ± 5.76 years). Patients showed a smaller compensation response to pitch perturbation than controls (p < 0.05). Task-induced neural oscillations across five frequency bands were reconstructed in source space for each subject during pitch feedback perturbation. Patients exhibited reduced task-induced alpha-band (8-12Hz) neural activity unrelated to their atrophy patterns, in the right temporal lobe and the right temporoparietal junction (p < 0.01) from 250ms to 750ms after pitch perturbation onset. Patients also showed increased task-induced beta-band (12-30Hz) activity also unrelated to cortical atrophy in the left dorsal sensorimotor cortex, left premotor cortex and the left supplementary motor area (p < 0.01) from 50ms to 150ms after pitch perturbation onset. Reduced average alpha-band power at the peak voxel in the temporoparietal cluster in the right hemisphere could predict speech motor impairment in patients (β = 3.41, F = 8.31, p = 0.0128) whereas increased average beta-band power at the peak voxel in the left dorsal sensorimotor cluster could not (β = -1.75, F = 1.72, p = 0.2123). Collectively, these results suggest significant disruption in sensorimotor integration during vocal production in nfvPPA patients which occurs unrelated to patterns of atrophy. These findings highlight how multimodal structure-function imaging in PPA enhances our understanding of its pathophysiological sequelae.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3