Abstract
ABSTRACTAutomated microscope systems are increasingly used to collect large-scale 3D image volumes of biological tissues. Since cell boundaries are seldom delineated in these images, detection of nuclei is a critical step for identifying and analyzing individual cells. Due to the large intra-class variability in nuclei morphology and the difficulty of generating ground truth annotations, accurate nuclei detection remains a challenging task. We propose a 3D nuclei centroid detection method by estimating the “vector flow” volume where each voxel represents a 3D vector pointing to its nearest nuclei centroid in the corresponding microscopy volume. We then use a voting mechanism to estimate the 3D nuclei centroids from the “vector flow” volume. Our system is trained on synthetic microscopy volumes and tested on real microscopy volumes. The evaluation results indicate our method outperforms other methods both visually and quantitatively.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献