Enhanced cell viscosity: a new phenotype associated with lamin A/C alterations

Author:

Jebane CécileORCID,Varlet Alice-AnaïsORCID,Karnat Marc,Hernandez-Cedillo Lucero M.,Lecchi Amélie,Bedu Frédéric,Desgrouas CamilleORCID,Vigouroux Corinne,Vantyghem Marie-ChristineORCID,Viallat AnnieORCID,Rupprecht Jean-FrançoisORCID,Helfer EmmanuèleORCID,Badens CatherineORCID

Abstract

AbstractLamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole cell mechanics has been poorly addressed, even less so in terms of measurable physical parameters. In the present study, microfluidic experiments combined with theoretical analyses were performed to provide a quantitative estimation of the whole cell mechanical properties. This allowed the characterization of mechanical cell changes induced by lamin A/C alterations resulting from Atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Results unveil an increase in the long-time viscosity as a signature of cells affected by lamin A/C alterations. In addition, they show that the whole cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. This enhanced cell viscosity assessed by our microfluidic device could represent a useful diagnosis marker for lamin-related diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3