Author:
Fu Shengwei,Zhang Rongrong,Gao Yanmei,Xiong Jiarui,Li Ye,Pu Lu,Xia Aiguo,Jin Fan
Abstract
ABSTRACTBacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as Bacteria-Mediated Cancer Therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in BMCT process, via hierarchical modulation of the lighting power density (LPD) of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatiotemporal and noninvasive control of bacterial genetic circuits in vivo. By combining computational modeling with high throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process, and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献