acCRISPR: An activity-correction method for improving the accuracy of CRISPR screens

Author:

Ramesh AdithyaORCID,Trivedi Varun,Schwartz Cory,Tafrishi Aida,Mohseni Amirsadra,Li Mengwan,Lonardi StefanoORCID,Wheeldon IanORCID

Abstract

AbstractHigh throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of novel and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes, thus determining the fitness effect of disrupted genes. This is accomplished by calculating an optimization metric that quantifies the tradeoff between guide activity and library coverage, which is maximized to accurately classify genes essential to screening conditions. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeast Yarrowia lipolytica to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in gain-and loss-of-function screens under high salt and low pH conditions to identify known and novel genes that were related to stress tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing CRISPR screens in non-conventional microbes;Journal of Industrial Microbiology and Biotechnology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3