Application of ARIMA, hybrid ARIMA and Artificial Neural Network Models in predicting and forecasting tuberculosis incidences among children in Homa Bay and Turkana Counties, Kenya

Author:

Stephen SiambaORCID,Argwings Otieno,Julius Koech

Abstract

AbstractBackgroundTuberculosis (TB) infections among children (below 15 years) is a growing concern, particularly in resource-limited settings. However, the TB burden among children is relatively unknown in Kenya where two-thirds of estimated TB cases are undiagnosed annually. Very few studies have used Autoregressive Integrated Moving Average (ARIMA), hybrid ARIMA, and Artificial Neural Networks (ANNs) models to model infectious diseases globally. We applied ARIMA, hybrid ARIMA, and Artificial Neural Network models to predict and forecast TB incidences among children in Homa bay and Turkana Counties in Kenya.MethodsThe ARIMA, ANN, and hybrid models were used to predict and forecast monthly TB cases reported in the Treatment Information from Basic Unit (TIBU) system for Homa bay and Turkana Counties between 2012 and 2021. The data were split into training data, for model development, and testing data, for model validation using an 80:20 split ratio respectively.ResultsThe hybrid ARIMA model (ARIMA-ANN) produced better predictive and forecast accuracy compared to the ARIMA (0,0,1,1,0,1,12) and NNAR (1,1,2) [12] models. Furthermore, using the Diebold-Mariano (DM) test, the predictive accuracy of NNAR (1,1,2) [12] versus ARIMA-ANN, and ARIMA-ANN versus ARIMA (0,0,1,1,0,1,12) models were significantly different, p<0.001, respectively. The 12-month forecasts showed a TB prevalence of 175 to 198 cases per 100,000 children in Homa bay and Turkana Counties in 2022.ConclusionThe hybrid (ARIMA-ANN) model produces better predictive and forecast accuracy compared to the single ARIMA and ANN models. The findings show evidence that the prevalence of TB among children below 15 years in Homa bay and Turkana Counties is significantly under-reported and is potentially higher than the national average.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Modeling the impact of control measures on tuberculosis infection in senior care facilities;Building and environment,2013

2. WHO Global tuberculosis report. 2018

3. WHO Global tuberculosis report. 2017

4. WHO Global tuberculosis report. 2020

5. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era;The Lancet Respiratory Medicine,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Hybrid Autoregressive Integrated Moving Average Artificial Neural Network Time Series Analysis of the Nigeria External Reserves;International Journal of Applied Mathematics, Computational Science and Systems Engineering;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3