Modulation of bacterial cell size and growth rate via activation of a cell envelope stress response

Author:

Miguel Amanda,Zietek Matylda,Shi HanduoORCID,Sueki Anna,Maier Lisa,Verheul Jolanda,Blaauwen Tanneke den,Valen David Van,Typas Athanasios,Huang Kerwyn Casey

Abstract

AbstractFluctuating conditions and diverse stresses are typical in natural environments. In response, cells mount complex responses across multiple scales, including adjusting their shape to withstand stress. In enterobacteria, the Rcs phosphorelay is activated by cell envelope damage and by changes to periplasmic dimensions and cell width. Here, we investigated the physiological and morphological consequences of Rcs activation in Escherichia coli in the absence of stresses, using an inducible version of RcsF that mislocalizes to the inner membrane, RcsFIM. Expression of RcsFIM immediately reduced cellular growth rate and the added length per cell cycle in a manner that was directly dependent on induction levels, but independent of Rcs-induced capsule production. At the same time, cells increased intracellular concentration of the cell division protein FtsZ, and decreased the distance between division rings in filamentous cells. Depletion of the Rcs negative regulator IgaA phenocopied RcsFIM induction, indicating that IgaA is essential due to growth inhibition in its absence. However, A22 treatment did not affect growth rate or FtsZ intracellular concentration, despite activating the Rcs system. These findings suggest that the effect of Rcs activation on FtsZ levels is mediated indirectly through growth-rate changes, and highlight feedbacks among the Rcs stress response, growth dynamics, and cell-size control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3