Tryptophan specialized metabolism and ER body-resident myrosinases modulate root microbiota assembly

Author:

Basak Arpan KumarORCID,Piasecka AnnaORCID,Hucklenbroich Jana,Türksoy Gözde MerveORCID,Guan RuiORCID,Zhang PengfanORCID,Getzke Felix,Garrido-Oter RubenORCID,Hacquard StephaneORCID,Strzałka KazimierzORCID,Bednarek PawełORCID,Yamada KenjiORCID,Nakano Ryohei ThomasORCID

Abstract

AbstractIndole glucosinolates (IGs) are tryptophan (Trp)-derived sulfur-containing specialized metabolites that play a crucial role in plant-microbe interactions in plants of the order Brassicales, including Arabidopsis thaliana. Despite the growing body of evidence implicating IG biosynthetic pathways in root-microbiota interactions, how myrosinases, the enzymes that convert inert IGs into bioactive intermediate/terminal products, contribute to this process remains unknown. Here, we describe the roles of the PYK10 and BGLU21 myrosinases in root-microbiota assembly partly via metabolites secreted from roots into the rhizosphere. PYK10 and BGLU21 localize to the endoplasmic reticulum (ER) body, an ER-derived organelle observed in plants of the family Brassicaceae. We investigated the root microbiota structure of mutants defective in the Trp metabolic (cyp79b2b3 and myb34/51/122) and ER body (nai1 and pyk10bglu21) pathways and found that these factors together contribute to the assembly of root microbiota. Microbial community composition in soils as well as in bacterial synthetic communities (SynComs) treated with root exudates axenically collected from pyk10bglu21 and cyp79b2b3 differed significantly from those treated with exudates derived from wild-type plants, pointing to a direct role of root-exuded compounds. We also show that growth of the pyk10bglu21 and cyp79b2b3 mutants was severely inhibited by fungal endophytes isolated from healthy A. thaliana plants. Overall, our findings demonstrate that root ER body-resident myrosinases influencing the secretion of Trp-derived specialized metabolites represent a lineage-specific innovation that evolved in Brassicaceae to regulate root microbiota structure.SignificanceER bodies were first identified in roots of Brassicaceae plants more than 50 years ago, but their physiological functions have remained uncharacterized. A series of previous studies have suggested their possible role in root-microbe interactions. Here, we provide clear experimental evidence showing a role for ER bodies in root-microbiota interactions, which overlaps with that of root-exuded Trp-derived metabolites. Our findings delineate a plant lineage-specific innovation involving intracellular compartments and metabolic enzymes that evolved to regulate plant-microbe interactions at the root-soil interface.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3