Associative nitrogen fixation could be common in South African mesic grassland

Author:

Morris Craig D,Ramesar Danvir RORCID,Burgdorf Richard J

Abstract

AbstractNon-symbiotic nitrogen-fixing bacterial diazotrophs closely associated with the roots of grasses probably contribute most of the new nitrogen acquired to sustain productive natural grasslands, yet their ecology is poorly understood, especially in southern Africa. We looked for genetic evidence, using qPCR and gel electrophoresis, for the presence of the bacterial nifH gene associated with the roots of four grass species (20 plants each) in a mesic grassland in South Arica, which would indicate the potential for N fixation by diazotrophs. Grasses most tolerant of low N (Aristida junciformis) were predicted to harbour the most diazotrophs, especially compared to those most responsive to fertiliser N (Eragrostis curvula). However, the nifH gene was found in all 80 root samples and did not differ in copy number between species. Sequencing of a representative sample confirmed the identity of the nifH gene. The recently burned half of the grassland had 60% more nifH genes than the area burned 15 months previously, suggesting that grass growth stimulated by fire could recruit diazotrophs. Given their ubiquity and importance in the N economy of grasslands, research is required to characterise root-associated diazotroph communities, quantify their N fixation rates, and understand their environmental controls.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3