Jointly Modeling Species Niche and Phylogenetic Model in a Bayesian Hierarchical Framework

Author:

McHugh Sean WORCID,Espíndola AnahíORCID,White Emma,Uyeda Josef

Abstract

ABSTRACTWhen studying how species will respond to climatic change, a common goal is to predict how species distributions change through time. Environmental niche models (ENMs) are commonly used to estimate a species’ environmental niche from observed patterns of occurrence and environmental predictors. However, species distributions are often shaped by non-environmental factors–including biotic interactions and dispersal barriers—truncating niche estimates. Though a truncated niche estimate may accurately predict present-day species distribution within the sampled area, this accuracy decreases when predicting occurrence at different places and under different environmental conditions. Modeling niche in a phylogenetic framework leverages a clade’s shared evolutionary history to pull species estimates closer towards phylogenetic conserved values and farther away from species specific biases. We propose a new Bayesian model of phylogenetic niche estimation implemented in R called BePhyNE (Bayesian environmental Phylogenetic Niche Estimation). Under our model, species ENM parameters are transformed into biologically interpretable continuous parameters of environmental niche optimum, breadth, and tolerance evolving as a multivariate Brownian motion. Through simulation analyses, we demonstrate model accuracy and precision that improve as phylogeny size increases. We also demonstrate our model on eastern United States Plethodontid salamanders and recover accurate estimates of species niche, even when species occurrence data is lacking and entirely informed by the evolutionary model. Our model demonstrates a novel framework where niche changes can be studied forwards and backwards through time to understand ancestral ranges, patterns of environmental specialization, and estimate niches of data-deficient species.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3