Identification of Leishmania donovani inhibitors from pathogen box compounds of Medicine for Malaria Venture

Author:

Tadele MarkosORCID,Abay Solomon M.ORCID,Makonnen Eyasu,Hailu Asrat

Abstract

AbstractLeishmaniasis is a collective term used to describe various pathological conditions caused by an obligate intracellular protozoan of the genus Leishmania. It is one of the neglected diseases and has been given low attention in drug discovery researches to narrow the existing gap in safety and efficacy of the currently used drugs to treat leishmaniasis. The challenge is further exacerbated by the emergence of drug resistance by the parasites. Aiming to look for potential anti-leishmanial hits and leads, we screened MMV Pathogen Box against clinically isolated L. donovani strain. Compounds were screened against promastigote, and then against amastigote stages; of which, 35 compounds showed >50% inhibition on promastigotes in the initial screen (1 μM). Out of these compounds, 9 compounds showed >70% inhibition with median inhibitory concentration (IC50) ranges from 12 nM to 491 nM on anti-promastigote assay and 53 to 704 nM on intracellular amastigote assay. Identified compounds demonstrated good safety on THP-1 cell lines and sheep RBCs, and appropriate physico-chemical property suitable for further drug development. Two compounds (MMV690102 and MMV688262) were identified as lead compounds. Among these compounds, anti-tubercular agent MMV688262 (delamanid) showed synergistic effect with amphotericin B, indicating the prospect of this compound for combination therapy. The current study indicates the presence of additional hits which may hold promise as starting points for anti-leishmanial drug discovery and in-depth structure activity relationship studies. Future works also needs to investigate antiamastigotes activity of remaining ‘hits’, which were not covered in the present study.Authors summaryVisceral leishmaniasis is a major public health problem in endemic regions. Different drugs have been used to treat visceral leishmaniasis. However, the available drugs are either toxic, non-compliance to the patient, painful upon administration, low in efficacy, or costly. New chemical entities that overcome the limitations of existing drugs are therefore desperately needed. Screening of 400 pathogen box compounds against of Leishmania donovani clinical isolate resulted in identification of 35 compounds with >50% inhibition against promastigotes at 1 μM. Out of these compounds, 9 showed >70% inhibition with median inhibitory concentration ranges from 12 nM to 491 nM on anti-promastigote assay, and 53 to 704 nM on intracellular amastigote assay. Our work identified new compounds which hold promise for further drug development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3